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Abstract—A continuum theory for elastic composite materials consisting of a matrix and inclusions is
presented. The approximate effective elastic moduli defined dynamically by means of the phase velocities of
long plane harmonic waves are obtained for ellipsoid-, needle- and disk-shaped inclusions aligned or
oriented at random. The results are compared with the effective moduli obtained by other methods.

1. INTRODUCTION

References[1,2] contain a continuum theory developed for a laminated elastic material. The
method, called “the effective stiffness theory”, transforms a heterogeneous material into a
homogeneous higher-order continuum with microstructure. The model shows the dispersion of
harmonic waves. Although the dispersion curves are approximate, the phase velocities for long
wave-lengths are exact[1). In this case, the effective moduli defined dynamically by means of the
phase velocities of long wave-lengths, are equal to the effective moduli defined statically. Later,
the “effective stiffness” method was applied to unidirectional fibre-reinforced composites |3, 4]
and to isotropic composites consisting of a matrix and spherical inclusions[5].

The material discussed in Ref.[4] was a fibre-reinforced composite with identical parallel
fibres arranged in a hexagonal array. However, the same results apply to a material built up of
composite elements consisting of fibres of circular cross-section surrounded by a cylindrical
matrix jacket. The composite elements are arrayed in a way that makes the composite material
macroscopically homogeneous and transversely isotropic. The radii of the composite elements
can take arbitrarily small values so as to fill the space continuously. For such an arrangement of
fibres, Hashin and Rosen[8)] established exactly four of the five effective static moduli, and
obtained the upper and the lower bound for the remaining fifth modulus. A comparison of these
moduli with the effective dynamic moduli established by the application of the effective stiffness
theory was presented in Ref. [4]. It was found that for a shear modulus of the fibres higher by a
factor of 10 and 100 than the shear modulus of the matrix, and for Poisson’s ratio of both fibres
and matrix » = 0.3, every one of the four dynamic effective moduli was slightly higher than the
exact value of the corresponding static effective modulus.

A continuous mode] of materials composed of a matrix and spherical inclusions was evolved
in Ref. [5]. The composite element of this model was formed by a spherical inclusion and a
spherical matrix jacket. The composite elements of various sizes were arranged to produce a
macroscopically homogeneous and isotropic material. For this special microscopic arrangement,
Hashin[6] obtained an exact static effective bulk modulus. In this case also, the approximate
dynamic effective bulk modulus reported in Ref. [5] was slightly higher than those obtained in
Ref. [6], the phase moduli having similar values as the moduli considered in Ref. [4].

Although, to the best of our knowledge, no general proof has so far been presented of the
equivalence of the effective moduli defined statically (when the moduli bind between them the
volume means of the components of the stress and strain tensor, with no considerations given to
the inertia forces) and those defined dynamically (in terms of the phase velocities of long
harmonic waves), the results reported above offer the possibility of using the effective stiffness
method to calculate the approximate effective moduli. This problem is the subject of the present
paper.

In Section 2, we consider the case of orthotropic ellipsoid-shaped inclusions. The material is
assumed to be composed of ellipsoid-shaped composite elements. All ellipsoids are shaped alike
and aligned. The sizes and the arrangement are such that the composite is macroscopically
homogeneous and orthotropic. By examining the phase velocities of plane harmonic waves, nine
approximate dynamic effective moduli are found for this case in explicit form. In Section 3, the
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model is generalized to ellipsoid-shaped inclusions of various shapes and orientations. Section 4
discusses an isotropic arrangement of inclusions of a shape of alike ellipsoids of revolution.
Section 5 deals with needle- and disk-shaped inclusions. In Section 6 the results of illustrative
calculations of the effective moduli are discussed and compared with the effective moduli
obtained by other methods.

2. ALIGNED ELLIPSOID-SHAPE INCLUSIONS

Let the material consist of composite elements shown in Fig. 1. The inclusions are formed by
ellipsoids. The local coordinate basis £; is placed at the centre of the inclusion so that the local
axes f; lie in the principal directions of the ellipsoid. The lengths of the ellipsoid semi-axes are ar,,
bry, cry, where a, b, c are positive dimensionless numbers defining the shape of the ellipsoid. The
inclusion is surrounded by a matrix jacket whose outer surface is a similarly oriented ellipsoid
with semi-axes ar,, br,, cr.. r; and r, have the dimension of a length. The material consists of
such composite elements of different sizes but oriented in the same way; hence all the local bases
i are parallel to the global basis x; (Fig. 2). a, b, ¢ are constant for all the elements. Although r,
and r, vary, it is

n=$=const., n#0,n#1.

2

The sizes of the composite elements vary to infinitesimal values so that the space can be
completely filled with them. The matrix is an elastic isotropic material with Lamé’s constants A,
w2 The inclusions are of an elastic orthotropic material, the planes or orthotropy being the planes
of symmetry of the inclusions. The distribution of the composite elements is assumed to be such
as to make the composite material macroscopically homogeneous and orthotropic.

Consider now a single composite element (Fig. 1) with the xo; coordinates of its centre.
Introduce in it the local ellipsoidal coordinates r ¢ 9

%= ar cos ¢ sin ¥,
X, = br sin ¢ sin 3,
Xy=crcos . 2.1

Set forth the assumptions concerning the variations of the displacement vector in the composite
element. The displacement vector 4" in the inclusion is assumed to be linearly dependent on %,
and the displacement vector & in the matrix jacket of the element to be linearly dependent on r,

ie.
B0 (x5, 1)= F6)(%oj, 1) + Ky (o5, 1),
(x5 1) = A& (Xop, 12, @, B, )+ (r = 1) Ui (xey, @, 9, 1). 2.2)

In the above, i6/(xo;, t) denotes the displacement vector at the centre of the composite element,
482(xa;, 12, @, 9, t) the displacement vector on the outer surface of the element at a point with the

Fig. 1. Ellipsoidal composite element.
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Fig. 2. Composite material with aligned ellipsoids.

local coordinates r,, ¢, 3. The wavy line denotes that we are dealing with components in the local
basis &. 45, @2, ¥, U; are functions defined only for discrete xq;, 72, i.€. at the centres or on the
surfaces of the composite-elements. Since r, and r, are very small compared to the macroscopical
unit length, we shall replace these functions by continuous functions defined for all x;, r > 0. We
shall further assume that @5 and #$ can be replaced by a single vector function 4 called the

gross-displacement, so that we obtain

ﬁali)(xj, t) = ﬂ.' (xh t),
AQ(x;, 12, @, 9, t) = (x5, t) + ral . 1(x;, )a cos ¢ sin &

+ fli2(x;, t)b sin @ sin & + dia(x;, t)c cos 3. (2.3)

For r = r1, the condition of continuity of displacement on the surface of the inclusion gives—with
the use of (2.1) to (2.3)—the bond between U; and &, s, viz.

(r.—r)U: = a cos @ sin §(raflis = rign:) + b sin ¢ sin 3 (raffi2 — rihai)
+ ¢ cos §(ra2fiis — rlll;z.‘)- (24)

The bond between the neighbouring composite elements is guaranteed by the existence of 4; and
by the relations (2.3). Substitution of (2.4) into (2.2) yields

=i + %y for 0<r=<r (inthe inclusion),
ﬁi(z) =i+ ij‘Iji,

1 .
I'Iji = ; [rzui_,- +

r—r;
rn—n

(radi; ~ rl'/;ii)]

for r;<r <r,(in the matrix). (2.5)

The state of deformation in the medium is now described by & and ;.
Denote the quantities referring to an ordinary composite element by the underlain index &

The strain energy W' of the element ¢ is defined by
[3

W= f f f W' A7, df, df,+ [ f I W' 4%, ds, dfs,
'3
£

v v
£

| | 1 . Jp (D =1

w' = 2 cuésy’? +5 €Y’ +§ €€+ ENER+C1ENES
. - ~(1)2 ~(1)2

+Cn€RER+2C1EN +2055€ 5 +2c6€55,

1
2 ~2)=(2 ~2)=(2
w'¢ )=§/\2€Ei) &+ [.Lzé(ij)eij),

136" 9"\ Lo _ 1 (0E7 0™
e =2 (G +5r) =5 (5 + 5 ) 2.
€ 2(af, AT ) € 2(ax,- axi> 26)
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In the above, V' and V* are, respectively, the volume of the inclusion and the volume of the
£ €

matrix jacket. i1, Ci2, C13, C22, C23, C33, Casy Css, Ces are the material constants of an orthotropic
inclusion with the constitutive equations

1 ~(1 ~(1)
FR=cnéi?+ crnéd+ Ci3€33,

~(1)
79 = o€ + Cn€SY + €2:€87
’ Q.7

-40)]

733~013€11 €Sy

+Ca€% +¢5€33,

- 1 pr -
T 26’446(23), iy = 2655613, P = 2c66€(112),

where 74’ denotes the stress tensor in the inclusion. By using (2.5) we obtain the strain energy W
£

per unit volume of the composite element ¢

Wl
W ___—
£ V(l) + V(2)
& £
in the form
1 .. = .. 1~ __
W=’2' A.-jklfiifkl +Bijk1€ij‘)’k1 +§ ijl’)’ij')’kl, (2.8
£
where
€& =l Ty =ty — .

The material tensors Auu, Bi, Cine are given in the Appendix, eqn (A1). If W denotes the strain
energy per unit volume of the composite material, then

2 W(v(1)+ V(Z))
—fee €

ST 29
4 £

where the summation is taken over all the composite elements ¢ contained in a small
macroscopical volume.

The kinetic energy K' of the composite element ¢ is defined by
&

2]1 f iV d, dizdf3+%fj J' 025 A, A dfs (2.10)
f
V(Z
¢

where p, and p; are, respectively, the mass density of the inclusions and the mass density of the

matrix. The dot above a quantity denotes the derivative with respect to time. K' is calculated
3

from (2.10) by using (2.5). Since only the phase velocities of very long harmonic waves will be

required later on, in the present case we can neglect in K' all the terms producing dispersion.
£
Without these terms the kinetic energy K of unit volume of the composite element will turn out to
[

be

K=xpidi, p=0’p+0-5)p.. (2.11)
3

B |
=1

Analogously to (2.9) we define the kinetic energy K of unit volume of the composite material.
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Since W, K depend on r,, . only through the intermediary of constant n, W in (2.9) can be
3 £ [ 3 [

factored out of the summation (similarly as K), and we obtain
¢

Since in this case, the basis £; is parallel to the basis x; for all £ the wavy line may be left out.
Let V denote a fixed regular region, and t,, ¢, fixed times. For independent variations 6u;, 6y
for which

ou; = 5{‘/.‘,‘ =0
on the surface S of the region V, Hamilton’s principle is of the form

affv (K - W)dV dt =0. 2.12)

The sought equations of motion are Euler’s conditions of the variational principle (2.12)

Tijii + Tiji — ﬁu, = 0, agij = 0 (213)
where
_oW W
Tij = ae.-,-’ T = a‘yﬁ. (214)

By substituting (2.8) into (2.14), and (2.14) into (2.13) we obtain 12 equations of motion expressed
in terms of u;, .
A plane harmonic wave propagating in the composite material is of the form

u = Ul eik(n,x,—ct), ‘plm = ‘I’lm elk(n,x,-ct). (2‘15)

Here U, ¥, are the constant amplitudes, k is the wave number, ¢ the phase velocity and n; is
the unit vector defining the direction of propagation. After substituting (2.15) into (2.13)
expressed in terms of u;, ¢y, we obtain a homogeneous system of equations for U, yu.. The
condition of non-zero amplitudes is that the determinant of the system should be zero. This is the
condition which enables the wave to propagate, and from this condition we can obtain the phase
velocity ¢ of the wave. Since the dispersive terms in (2.10) were neglected, ¢ is independent of k,
i.e. ¢ is independent of the wave length. Generally, if dispersion were considered, this ¢ would
correspond to the phase velocity of infinitely long waves only. In a homogeneous orthotropic
material with the material constants

€11, €12, €13, €22, €23, €33, Caa, Css, Cos (2.16)

the meaning of which is similar as in (2.7) there is no dispersion and ¢ are constant. The moduli
(2.16) determined from the condition that the phase velocities of harmonic waves in a
homogeneous material are the same as the phase velocities of the corresponding waves in the
composite material for infinite wave lengths, will be termed the dynamic effective moduli. This
comparison yields the following final results (for details see the Appendix, eqns (A2)-(A4)).

Aun Bunn Buz Buas Anz Bann Bxnn Bnn
1B Cun Cuz Cusn _ 1 | Bun Cin Cuz Cum
. . . . ’ Cr2 =‘C‘ . - - - ’
Bz Ciun Cam Cas Biizz Cuz Cxn Casn

B1133 CIISJ C2233 C3333 B1133 Cl 133 C2233 C3333

Cu=

0l
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Az Ban Banm Bas Ans Bun Bun Bun
= 1 Bz Coaun Ciz Cusl, ; =,l_ Bxu Ciu Cuz Cum
sz—E Cas C

Bay Cizz Coe Com Bayn Cun Cun Can

Bni Cus Cas Cuxn Byss Cuss Can Cam

Ass By B Buss Az Buuw Buz Biw
. 1 By Cuni Cuze Cusif, | B Cin Cuz Cun
=71 . R B . 2-arel B . . . (VRY)]

Bsn Cin Com Com By Cun Can Cown

Bz Cum Cass Cas Biss Ciss Comn Casma

42323 62323 ~32332 .‘}mz Bz Buy
qﬂﬁ sz sz Bims Qms (;&331
= Baan C2332 C3232 - B Cuss C3131
Cu = = ~ Css = = P
6_2323 qzsazi s Cma Cu ’
Crn Can Cisnt Gan
Apn Boo 1?1221 .
Bz Cun Cim Cihu C1|zz Cius
Foe = B Cian Can with C= [Cuzn Can: Cas|.
o6 = = 2 - - %
Con C\n\} N Cins Cas Cam
Con Com

3. ELLIPSOIDS OF DIFFERENT SHAPE AND ORIENTATION

The inclusions considered in the preceding section, were all aligned, similar ellipsoids.
Imagine now, that a unit volume of the composite contains a large quantity of composite
ellipsoids having different shape, size and orientation, and that n is variable also. It is only
assumed that the arrangement of the inclusions is special in the sense that for a given inclusion
the surface of the composite element and the surface of the inclusion are similar ellipsoids.
Consider the material of the inclusion to be orthotropic and that of the matrix isotropic.

Use the notation

il

S o

B

R
[l
S s

and let there be for each composite element a € (&), @), B € (B, B2), where a, < a,, 8, < B,
are fixed positive finite numbers; further, let there be n € (0,1), ¢ € {0,27), % € (0, (#/2)},
o € (0, 7), where ¢, 9, w are Euler’'s angles which relate the basix £; and the basis x; (see the
Appendix). If we know the volume rate of composite elements in a macroscopical unit of the
composite for various orientations of the bases £, for various 7, , 8, i.e. if we know the function
Flo, 8, o, 1, a, B) satisfying the condition

B, fa, 1 po p20 pof2
f j f f f f F(e, 8, 0,7, 8) sin & d8 de do dn da dg =1,
81 at 0 Jo ] ]

we can define the strain energy % of unit volume of this composite material by the relation

8, oy 1 w p2w /2
W= f f f f f Flo, 9, 0,m, a,8)W(e, 8, w, 1, a B) sin & 49 do dw dn da dB.
# oy 0O 0 1] 1]
G.1)

W(p, 9, w, 0, a, B) of (3.1) is given by the expression Win (2.8) in which the index ¢ denotes that

W refers to the composite elements with the parameters ¢, 4, o, 1, a, 8. If we carry out in (2.8)
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the transformation €;, 7; from the basis # to the basis x; using the matrix T;; (see (A5), (A6)), we
obtain for % the equation

1 1
W= 3 Aipa€ii€n + Bipa€iryn +§ CirYiiYu, (3.2

where

By oy 1 o f2m fTi2 -
Allkl = f f f f 4[ f F(‘P, 19; , 1N, a, B)Amnop (7'9 a, B)T“"‘T]"T'“’TIP
81 Jay Jo Jo Jo Jo X sin ¢ d9 dp do dn da dB

and similarly for Biu, Cijit. Amnops Bmnop, Cmnop are given in (Al). T; in (3.2) depend on Euler’s
angles ¢, 4, w and are given by (AS), (A6).

The kinetic energy density ¥ could be defined and the equations of motion derived using a
procedure analogous to that of Section 2. According to the form of the function F, a comparison
with a homogeneous material displaying the same material symmetries enables us to seek the
approximate effective moduli by identifying the phase velocities of the corresponding harmonic
waves.

4, INCLUSIONS IN THE FORM OF ISOTROPICALLY DISTRIBUTED
ELIPSOIDS OF REVOLUTION

In this section we shall examine a composite material the composite elements of which
contain inclusions in the form of ellipsoids of revolution of identical shape and various sizes at a
constant 7, oriented and arranged so as to, make the composite macroscopically homogeneous
and isotropic. Let the inclusions be transversely isotropic with the isotropy axis in the axis of
revolution £, so that for an isotropic matrix, each composite element is symmetrical, both
geometrically and materially, about £;. Transverse isotropy is a special case of orthotropy for

C11=C2x, Cau=Css, C13=Ca, 2Ce6=Cpi—Cra 4.1)

hence the material of the inclusions is defined by five constants, ¢1, 12, €13, C33, Cas. Further,
according to the assumptions,

n=const.,, a=bh, a=const.

We are dealing with a special case of the material discussed in Section 3. Because of the axial
symmetry of the elements about &5, we set w =0 in (AS5). As a result, (3.2) simplifies to

1
W= ';‘ Aijkleijekl + Bijk:Eij‘Ykl +§ Cijkl‘Yij‘Ykl, (42)

where

w2 2 .
Apa == f J' Avmop T TnTeoT, sin & dg dd
2 (1] 0

a_nd similarly for By, Ci, Ty in (4.2) being of the form of (A7). Anmop in (4.2), and similarly Bumop,
Cmnop are obtained by substituting (4.1) into (A1). Evaluation of the integral in (4.2) gives Ay,
Bija, Cia. Their non-zero components are of the form of (A8). The kinetic energy density %

continues to be
1_..
K= 3 Plltk,  p = 7°pi+(1—-7n7)pa.

Similarly as in Section 2, the equations of motion can be obtained by the application of
Hamilton’s principle. Comparing the phase velocities of the longitudinal and transverse wave for
the model with microstructure with those for a classical homogeneous isotropic continuum, the
effective Lamé’s moduli A, 7 become

2b7bsbio — bs(b7* + bs®)

= bt bra)(bs + bro)

$S Vol. 12, No. 9/10—D
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4bybsbs—2bs*bs— bi'(ba+ bs)

A = b e 3ba Tt 2b4) “4.3)
by, ba,. .., by are given in (A9).
If the material of the inclusions is isotropic, we have
Cn=(333:/\1+2u1, Ci2=Ci3=2Ay Ca= 1. (4.4)

A1, p are Lamé’s constants of the material of the inclusions. For this particular case we obtain
from (4.3)

o A(b5+b%)
z ‘<”b;+b4+2A>“2’

Ti0- B(b:—b3)(b>+2b3)+2Abs(3B —4A)
+ =
A+2R <82+ (b5—b5+2A)b5+2bi+3B —44A) >“2' 4.5)
In (4.5) we introduced the notation
A=n’(y=1), B=71(8y-8),
_M _21—») _ Ae _1 9.
7_“29 O = 1—2Vg sy Ve 2(A<+/.L(),E 1,2’
bi=b =X<(415 +14)+ 25 +4)(a2+i)>
2 IJIZ ? 15 2 2 az >
oy Vs (24 L (4.6)
bi=—- by =15 1)<17 (o +a2>>,

1 14 L
_— b7 = E <(762 + 48) + 2(262 + 3)((12 +?)>

M2

b5

It

V is defined in (A1). The case of spherical inclusions is obtained on setting & =1 in (4.5), (4.6).
The effective moduli turn out to be

. V'(y — )(26:+3)
w= <1 2y — 1)+ V25, + 3)>‘“’

L 517 Vaal3(8,y — 82— 4(y = 1)]
&= (1 EanEva.: BBy =) =y = 1)1}>“2' @.n

k2 is the bulk modulus of the matrix, i.e.

Similarly, < denotes the approximate effective bulk modulus of the composite. The case of
spherical inclusions, including dispersion, was examined in Ref. [5].

5. RANDOMLY DISTRIBUTED NEEDLE- AND DISK-SHAPED INCLUSIONS

For inclusions in the shape of ellipsoids of revolution, examined in Section 4, the effective
moduli at @ >0 are the same as those at « >, The first case represents highly flattened, the
second case highly elongated ellipsoids. As will be shown in Section 6, the model discussed in
Section 4 for composite elements shaped like ellipsoids of revolution, is not suitable for
needle-shaped and disk-shaped inclusions. The reason is that with « tending away from 1, the
effective moduli (4.5) at y > 1 grow larger, and in the limit & — « (a« - 0) exceed the upper bound
of Hashin-Shtrikman[7].

A model better suited for materials with needle-shaped inclusions is that of fibre-reinforced
composites derived in[4]. As shown in Fig. 3, the composite element is a long cylinder of radius
rz, in the £s-axis of which is a fibre of circular cross-section with radius r,. r; and r, are varied at



On the effective moduli of elastic composite materials 663

Ly

—

Fig. 3. Needle-shaped composite element.

constant i = ri/r, and the composite elements are oriented and arranged so as to fill the space
and make the composite macroscopically homogeneous and isotropic. The strain energy and the
kinetic energy of such composite elements were calculated in[4]. Proceeding as outlined in
Section 4, for isotropic needles the effective moduli are obtained in the form of (4.3), with

1 bi=2A"+3B'+V'(36:+2) + 6, ;1‘b2=2A"'2B'+ V'(38:+2),
2

2
-l—ba =9A'-4B'+ V'(8:—- 1), 1 bi=2A"+8B'+V'(35.+2),
[1%] M2

-1—b5= —11A"+6B'+ V'(5.~ 1), ’%b6=4A’ +B'+V'(5:+4)+1, 6D
2

M2

L A" +B 4+ V'(6:44), L by=~64'+B'+V'(52-1),
M2 H2

L p=9A + B+ V'(62+4), Lb=4A'+B +V'(5.-1).
1% M2
In (5.1) we introduced the notation
' _i 2., ' __1_ 2 _ ' __2_ 712
A -157’ ('Y 1)9 B _157’ (617 62)7 V= 15(1_1’)21871-

For disk-shaped inclusions we shall use the model discussed in[1, 2]. The composite element
(see Fig. 4) is shaped like a disk whose radius R is considerably larger than the thickness 2r,. The
isotropic inclusion has a thickness 2r,. Again, r, and , are varied at constant 5 = r,/r, and the
composite elements are oriented and arranged so as to fill the space and make the composite
macroscopically homogeneous and isotropic. The strain energy and the kinetic energy of such

W«

W/ /ALY AT,

o

Fig. 4. Disk-shaped composite element.
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composite elements were calculated in[2]. The effective moduli for isotropic inclusions turn out
to be

_ - 2A"2
i —<1+3A d2+d3>ﬂz,

B//(8A "__ 3Bl/)(dl . dz) _ 8Au2d1>
(d, = d2)(d, +2d>) :

A+2i = <62+3B"+ (5.2)
with

di

L] _n _ s -1 e T (5
15[7(361+2)+1_n(362+2)], d; 15[7(6. Doy 1)],

dﬁ% [7(61+4)+1—_"—n(62+4)], A"=§(v -1, B”=§’(6.v = 82).

v, 81, 8; were defined in (4.6).

6. NUMERICAL RESULTS
The greater is the difference between the phase moduli, the broader are the bounds[6-8],
between which must lie the effective moduli for given volume fractions of the inclusions 17, i.e.
the greater is the scatter of the effective moduli in dependence on the shape and arrangement of
the inclusions. We shall make a comparison for the case of very hard inclusions, i.e. we choose

y=E'=100, »i=v,=03.
u

)

Some results for unidirectional, fibre-reinforced composites are shown in Table 1. The
approximate dynamic effective moduli given by (5.5) in[4] are compared with four exact static
effective moduli from[8]. The approximate effective moduli are slightly higher than the exact
values.

The results for the bulk modulus k of macroscopically isotropic composites with isotropic
phases are given in Table 2. For spherical inclusions & calculated from (4.7) are compared with
the exact values given by (38) in[6]. As to x for needle- and disk-shaped inclusions, we compare
(4.3), (5.1) and (5.2) with the results of [13] whose authors, Christensen and Waals, considered a
macroscopically isotropic arrangement of needle-shaped inclusions. They used five moduli for
parallel-oriented fibres and integrated over all fibre directions. Four of the five moduli are known
exactly, while the bounds of variation are known for the fifth (the transverse shear) modulus|8].
For randomly oriented fibres it is found that the static bulk modulus <’ is not affected by the
choice of the transverse shear modulus. The same can be done for disk-shaped inclusions. We
use the five moduli for parallel-oriented disks as those of the laminated medium (which are all

Table 1.
(5.5)in[4] Hashin-Rosen{8]
_ 1
n C}}/P-: Cu/#z Cn/llfz E(Cn +C|:)/;L2 Cn/#z C«/liz ClJ/ll-z %(C|1+C12)/Mz
03 81265 1.857 2.409 4,015 81.249  1.833 2.382 3.970
0.5 133437 2940 3.562 5.937 133.425 2922 3.542 5.904
0.7 186.494 5382 6.192 10.320 186.488 5372 6.180 10.299
Table 2.
K /i &lpa TS Klp: &'z g
spheres needles disks spheres needles disks
7 4.7) 43),5.1)  (52) (33)in[6] [13] [13]
0.3 3N 11.86 2749 3.65 11.85 27.33
0.5 5.61 19.07 4433 5.56 19.02 44.24
0.7 9.94 28.06 62.40 9.91 28.04 62.38
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known exactly), and similarly as in[13] integrate over all disk orientations and get the effective
moduli ¥’ and &'. As in the effective stiffness model, no distinction is made between finite
needles (disks) and infinite fibres (layers). Table 2 shows that in the cases of spherical, needle-
and disk-shaped inclusions, & calculated from (4.7), (4.3), (5.1) and (5.2) are slightly higher than
the exact ik for spherical inclusions[6] and &’ calculated for needle- and disk-shaped inclusions
according to[13].

Figures 5 and 6 show < and & for volume fractions of inclusions 7 € (0,1) in the
macroscopically isotropic case. The Hashin-Shtrikman bounds are drawn in dash lines. For
spherical inclusions & calculated from (4.7) are seen to coincide practically with the lower bound,
while the exact x given by (38) in[6] yields this bound exactly. For inclusions shaped like
ellipsoids of revolution, k calculated from (4.5), (4.6) grow larger if « moves away from 1 at fixed
7. Hence, the more elongated or flattened are the inclusions, the higher are k. For the limit o >
(a - 0), we obtain k, which exceed the upper Hashin-Shtrikman bound. This indicates that
become too high if the lengths of the ellipsoid axes differ in the order of magnitude. For
composite elements of such a shape, the linear approximation (2.2) of the displacement vector
does not seem adequate. In Section 5 the case of very elongated and very flattened inclusions was
approximated by composite elements of a different shape. As Fig. 5 suggests, k calculated for
needle-shaped inclusions from (5.1) are higher than those for spherical inclusions and coincide
practically with <’ calculated according to[13]. k calculated for disk-shaped inclusions from (5.2)
are even higher than those for needle-shaped inclusions and coincide approximatly with &’
obtained by the method of [13). Figure 6 shows that in the case of the effective shear modulus g,
the coincidence of i for disk-shaped inclusions obtained from (5.2) with i’ obtained by the

200 + y =100 upper bound /
1=1%703 /
/
50 /
/
. /
) /
k3 .
100 - disks /
needies /
\‘(
50 + lower bound
=gpheres
= spheroids a=4 ,!?
0 02 0% 06 08 ro
U]

Fig. 5. Effective bulk moduli &.

| lower bound

i =q. 4
[ - spheroids a=4, Z
I~ spheroids a =2, %

Fig. 6. Effective shear moduli .
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method of [13] (the dot-and-dashed line in Fig. 6) is not as good as for x. Besides, i for low 7
exceed slightly the upper Hashin-Shtrikman bound.
If the inclusions are harder than the matrix, i.e.

&>1, ’_(.l
M2 K2

>1,

the self-consistent method gives for disk-shaped inclusions the effective moduli coinciding with
the upper Hashin-Shtrikman bound[11]. Figures 5 and 6 show that k and j calculated from (5.2)
and by the method of [13] can be considerably lower for this case. To explain this, note that the
self-consistent method [9-10] fails to give consideration to the microscopical arrangement of
inclusions, while in the present model the material is built up of composite elements of a special
shape. It is seen from the form of the composite disk-shaped element that the role of the
inclusions and the matrix may be interchanged with 7 and y changed correspondingly to 1 -4
and 1/y. But now the matrix become harder than the inclusions and the self-consistent method
yields the lower bound[11]. Thus, the results of the self-consistent method can not apply to our
special microscopical arrangement of inclusions. If the inclusions are rigid the self-consistent
method yields infinitely high effective moduli for arbitrarily low concentrations 7 of disk-shaped
inclusions. This could be the case for such a special microscopical arrangement of inclusions if
the disks formed a rigid framework. It seems that for macroscopically isotropic composites the
scatter of the effective moduli due to various microscopical arrangements of disk-shaped
inclusions is considerable.

7. CONCLUSIONS

The object of the study was to find approximate effective moduli of elastic composites
consisting of a matrix and inclusions of various shapes. These moduli were obtained by
examining the phase velocities of harmonic waves in the effective stiffness model. Aligned or
randomly oriented inclusions shaped like ellipsoids, needles and disks were considered in the
study. The model referred to a special microscopic arrangement of the inclusions, which enables
the material to be built up of composite elements whose outer shape resembles the shape of the
inclusions.

In the approximate model the displacement in the inclusion and in the matrix is linearized. The
interaction between the inclusion and the matrix and between the neighbouring composite
elements is taken into account by simulating point by point continuity of the displacement at the
interfaces. Stress boundary conditions at the interfaces between the inclusion and the matrix can
not be included in the first-order approximation used in this paper. A second-order formulation of
the effective stiffness method was elaborated in[12] for laminated media. Both continuous and
discontinuous stress vectors at the layer interfaces were considered and the differences in the
dispersion curves were found negligible. The second-order formulation gave a better
approximation to the exact dispersion curves for shorter wave lengths giving, however, the same
phase velocities at infinite wave-lengths as the first-order formulation. It seems that for the
composites considered in this paper a higher-order approximation to the displacement field and
the stress vector continuity requirement would also have but a slight effect on the effective
moduli results.

In the cases examined in Section 6, the approximate moduli ranged within the bounds of
Hashin-Shtrikman (with some exceptions when the upper bound was slightly exceeded).
Whenever the approximate moduli could be compared with the exact ones[6, 8], the approximate
moduli were always slightly higher. The moduli were obtained explicitly, and the model is not
restricted to dilute suspensions of inclusions. Variously shaped inclusions can be considered to
be present simultaneously in the material, and the model can be generalized to several phases.

Considerable differences were found to exist when comparing our results obtained for
disk-shaped inclusions with those of the self-consistent method, which gives the moduli
coinciding with the Hashin-Shtrikman bound. The self-consistent method fails to give
consideration to the microscopical arrangement of inclusions. Its disadvantage lies in the fact that
a system of algebraic equations must be solved in the calculation of the moduli. The moduli are
obtained explictly only in the case of disk-shaped inclusions[11].
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It was shown in Section 6 that the microscopical arrangement of inclusions may affect the
effective moduli considerably. A shortcoming of the present method is that it assumes only a
special microscopical arrangement of inclusions. The phase geometry of real materials can be
described only statistically. In this connection we mention here the interesting papers[14-15]
whose authors, Bose and Mal, studied the propagation of harmonic waves in statistically uniform
fibre-reinforced composites. If the correlation in the position of the fibres can be ignored, their
formulae for the axial shear modulus and the transverse bulk modulus lead to the exact
Hashin-Rosen expressions[§].
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APPENDIX
(1) For the case of aligned ellipsoidal inclusions, the non-zero components of the tensors A, By, Cy. from (2.8) are

Aun =0+ =72 +2u2), Az = n2caa+ (- 9°) A2+ 200),
A =02+ (1= 1) A2+ 212), A=Az =ncat(1-79As,
Aun=Ann=nct(1=10h2 Ann=Ann=7’cs+(1-1As
Amz-A’uzl=1‘i2nz=A~2|zl-773066+(1‘7IJ)P-2,

Ama = AIJSI = Asn: = Asm n Css + (1 -1 )#Zy

A2323 = An;z = Azzu = Aszsz =n *caat(1- n )ﬂz:

Bun=nlh+2m) - i), Bame=1710Aa+ 212) ~ €2,
Bisss = p’[(A2+2p2) — ¢35)y Buize = Baa = 1°(Aa— c12),
B =Bun =12 c), Bars = Brom= 1°(Aa— c23),
E'm = Bml = Bmz = Bml n (Pvz Ces),

Buu = BISSI = B3||3 = B:m =7 (}Lz —Css),

B'zzza = B-zan = Eszzs = 3-3232 = ’flg(ltz ~ Cas), AD

(:"....=1;’c“+(3V—1,’))\2+[ (6+b2+ ) 27’3]1’%
Con=n’cnt(3V-n’ b b 3

2222 = N C2 A+ | Vi 6+?+? —21) [178
A —m3 3 ¢t ¢ 3
Caun=1 cu+@V -9+ <6+“—+?)—2‘q ]p.z,

anz—czzu 7IC|2+(V T]J)A2+V;L2,
C1133—C33|1 TIC|3 (V- ﬂs)A2+VI£2,

62233= 63322 n 023+(V n M.+ V[Lz,
C|2|2—11 Cest Vbz [ (3+2 ?

C2|21 ﬂC“+V Az [ (3+2—+%
Comn=Copz= 7°Ces + VA2+(V—1]])‘L2,
~ 2

C|3|3=1]3655+V%Az [ (3+2— -

a

~
v\_/ \_/\_/N
:
w

= c? 2 2
Csisi=n'css+ VP/\2+ [V(3+26—2+c—2
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C-ISJI = C:nz = TIJC55+ VA +(V - 173);1.2,

- 2 2 Py

- c? ¢? c?
Coz =7 Caat VE-Z At [V(3 +2P+?)— ‘r]"Jyz,
Casso= Cazy = N’caat VA +(V = )p,,

where

2

=h -
= Vi

By comparing the phase velocities of the corresponding waves propagating in the directions x.(i = 1,2,3) for the
composite material and for a homogeneous orthotropic material with the material constants (2.16) and the mass density p
defined by (2.11), the expressions for the moduli C,1, 22, T3, Cas, Css aNd T are obtained. For example, ¢,,, &2 and & are of

the form

a, . as Qi as ds an ap
_ 1]as as ais Qs = __1 as G Gis dis
C“zf as ays Gy @il CZZ—E an @is au s
s A Gy aye diz Qe Gz Qyo
dwo Ay a7 1 a a, Qs
6“26 A G an :F a; Az 4
a; a1 (x as Q2 a2
14 dis Qe o Qi
C=la;s an aw|’ ¢'= an  Qx (A2)
e Giz dis
Here a,, az, . . . , dx: are of the form
a|=An||+ZBnn+C'nn, a2=A~!212+2EI2|2+CZI2h
03=A||22+2E1122+C|122+/i|2|1+2B-Iz|z+c-'lzzl»
a4=B|||1+énu, a5=Euzz+Cnn,
ae=31133+6‘1|33, a7=1§1212+C~|221,
ag= El212 +Coz, @s= A + 2§1222+ Corna,
a|o=A121z+2B|z|z+é|2|2, a|1=B2222+ézzzz.
ﬂ:zzﬁzza,x‘f'ézza\, al3=31212+C_12\2,
a.4=C"m., a|s=éuzz. amzcnsa.
a;;= é:zzz, adig = ézzx_z, Ao = 6'3333,
@20=Cuzs 2= Crzar. 22 = Cruan. (A3}

To obtain ¢,, we examine the wave (2.15) for n; =0, n, # 0, n, # 0, The system (2.13) decomposes into two systems, the first
containing seven equations for U,, U,, ¥,,, ¥1,, V1, V1, and ¥,,, the second the equations for U, ¥,,, ¥,,, ¥,, and ¥,,. By
comparing the phase velocities ¢ in the condition of non-zero solution to the first system of equations

a:nx1+azn22—ﬁcz asn,  asthy At asmn; asn; agh:
adn s s Qe asn: 0 0
ash, s [13%) dis anh: 0 0
aeh, e s dyo (37153 0 0 =0
2 2 =2
asmn; asn:  AuN: Gisly Golly”+ Aol — pC~ Ay aqi,
asn» 0 0 0 A [0 a1
asn> 0 0 0 an, ax a4z
with the corresponding condition for the homogeneous material
E|‘n12+c—“n22_ﬁc2 (Ci2+ Ces)n 12 =0
(€12t Ces)in Emn|2+(_'22nzz‘ﬁ('2
and using (A2), we obtain
a5 a; as 0 a5 ay an
T | llas ay, ays a
C|2+cl§6=F Qi3 Gy 4y |t 4 14 1% 16 (A4)
Clas a5 a, ag
a; G a4n ds Qis A1z djyo

The same procedure applied to the wave (2.15) for n.=0, n, #0, n;#0, and for n, =0, n.#0, n, #0
would result in similar expressions for €13+ 55 and ¢2; + C.a. Then, after some manipulations, (A2)-(Ad)

yield the effective moduli in the form of (2.17).
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(2) From the local basis % one can pass to the global basis x. generally by the sequence of three rotations T, T, T'
defined by
=Tpx5, xi=Tix, xi=TP%,

cosw -sinw 0
sinw cosw Off
0 0 1

cosd 0 sind
0 1 o
~sind 0 cosd

cose —sing 0
sing cose O
0 0 1

()= TO9) = T
T () P(3) , TiPw)= (AS)

0€0.2m), oe(0,§>, w0 € 0,7

The basis x; passes to the basis x by rotating through an angle @ about x; = x} in the positive direction, the basis x passes to
the basis x} by rotating through an angle 4 about x5 = x in the negative direction and the basis x! passes to the basis %: by
rotating through an angle » about x} =X, again in the positive direction. Hence the transformation of T, from £ to x,

=Ty, Tylp, 8. 0)=TRe)TR(H TP(w) (A6)
depends on three independent Euler's angles ¢, 9, w. For =0, Ti? is a unit matrix, and T, takes the form

Ty(p, 9) = TR()TEX(D). (A7)

(3) Isotropically distributed inclusions in the shape of ellipsoids of revolution. After substituting (4.1) into {(Al) and
carrying out the integration in (4.2), the non-zero components of Ay, By, Cyu defining % in (4.2) become

3
A =Amn=Ann =?—5(80n +3c33 +4C|3+86‘«)+(1 - 1]3)(/\2+2[,l.z),
A =Ann=Aun=Ann=Ans= Az
3
=%(Cn +C33+5C12+8C13"4C44)+(1_7]3)A2,

Ann=Aun=Aum=Ann = A=A
=Ain=As5= A= Ay = Ans

3
= Asza =35 (76142633 = 512~ ders + 1200 + (1 - 1),
B = Bay = 33333 = TIJ[(A2+2IJ-2)_T15‘(8011 +3c¢5; +4c,, 4+ 8044)]; (AS)

By =Bonn = B33 =By = By = Bis
i
=7]3[Az'E (011+033+5clz+8613_4c44)],

Bz = B = Biz = Bapo = Bisiy = Bsns
= Bis3; = Bars = Bazs = By = Basx,

1
=By = n’[uz—ﬁ(h.. +2¢33-5¢—4cis+ 120“)],

3
Ciin = Cazz = Cus3 =‘;'—5‘(8Cn +3c3 +4cit+8cu)

g QL) o

3
Cuzn= Coun=Cun= Con = Cass= C3322=lll§(51| +C33+5£‘|2+8013_4544)

<15[17 @+ )]v n>Az+1—15[17—(a2+%)]Vp.2,

Ciz=Can= Ciis= Csi31= Caazz = Cizz= T,— (7Cu +2c33—5ci—4cin+ 12044)

15 [7+4(a +— )]VA; <15 [31+7(a +— )]V n >uz,
C122)=C2112=C1331=C3113=C2332=C3223=1’_(7cll+2C33-5612_4Cl3+12(‘«)

+i[17—(a2+i) o+ ([ 17- (a2+l Von’

15 a’ 2t 15 a? n ke

V was defined in (A1).
bi, ba,..., b in (4.3) are of the form

bi=Aun+2Bun+ Ci,
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b2 =
b=
bs =
b=
by =

where A, Byu, Ciu are given in (A8).
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Byt Cun, by=Bin+Cin,
Cint, bs=Cuiz,

A2 2B2a 4 Crapa,

Bizizt Cizia, b= Biziz+ Cizy
Cuizy, bio=Cia,



